Finite planar emulators for K4, 5-4K2 and K1, 2, 2, 2 and Fellows' Conjecture

نویسندگان

  • Yo'av Rieck
  • Yasushi Yamashita
چکیده

In 1988 Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. Archdeacon [Dan Archdeacon, Two graphswithout planar covers, J. Graph Theory, 41 (4) (2002) 318–326] showed that K4,5−4K2 does not admit a finite planar cover; thusK4,5−4K2 provides a counterexample to Fellows’ Conjecture. It is known that Negami’s Planar Cover Conjecture is true if and only if K1,2,2,2 admits no finite planar cover. We construct a finite planar emulator for K1,2,2,2. The existence of a finite planar cover for K1,2,2,2 is still open. © 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . C O ] 1 9 D ec 2 00 8 FINITE PLANAR EMULATORS FOR K 4 , 5 − 4 K

In 1988 M. Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. D. Archdeacon [2] showed that K4,5 − 4K2 does not admit a finite planar cover; thus K4,5 − 4K2 provides a counterexample to Fellows’ Conjecture. It is known that S. Negami’s Planar Cover Conjecture is true i...

متن کامل

Yo ’ Av Rieck and Yasushi Yamashita

In 1988 M. Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K4,5 − 4K2. D. Archdeacon [2] showed that K4,5 − 4K2 does not admit a finite planar cover; thus K4,5 − 4K2 provides a counterexample to Fellows’ Conjecture. It is known that S. Negami’s Planar Cover Conjecture is true i...

متن کامل

Planar emulators conjecture is nearly true for cubic graphs

We prove that a cubic nonprojective graph cannot have a finite planar emulator, unless one of two very special cases happen (in which the answer is open). This shows that Fellows’ planar emulator conjecture, disproved for general graphs by Rieck and Yamashita in 2008, is nearly true on cubic graphs, and might very well be true there definitely.

متن کامل

Entire choosability of near-outerplane graphs

It is proved that if G is a plane embedding of a K4-minor-free graph with maximum degree ∆, then G is entirely 7-choosable if ∆ ≤ 4 and G is entirely (∆+2)-choosable if ∆ ≥ 5; that is, if every vertex, edge and face of G is given a list of max{7,∆+2} colours, then every element can be given a colour from its list such that no two adjacent or incident elements are given the same colour. It is pr...

متن کامل

K4, 4 - e has no finite planar cover

A graph G has a planar cover if there exists a planar graph H , and a homomorphism φ : H → G that maps the neighbours of each vertex bijectively. Each graph that has an embedding in the projective plane also has a finite planar cover. Negami conjectured the converse in 1988. This conjecture holds as long as no minor-minimal non-projective graph has a finite planar cover. From the list there rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010